
University of Strathclyde
Department of Electronic and Electrical Engineering

Submitted for the Degree of MEng
in Electronic and Electrical Engineering

with European Studies

2009/2010

Paul MONSINJON
Motion control, positioning system
and software design of a robot.

Supervisor – Dr. David Harle
April 2010

Except where indicated to the contrary, all the work reported in this project is my own.
Signature ____________________ Date __________

University of Strathclyde
Electronic and Electrical Engineering

Final Year Project

Eurobot 2010

Motion control, positioning system
and software design of a robot

23rd of April, 2010
Student:Paul MONSINJON
Advisor:Dr. David HARLE

Abstract

Robotics has became an important domain of research and engineering during the
last decades. Combined with the constant growth of computation power, a wider
domain of engineering topics have been enabled. It's now likely to see different kind
of robotics contests all around the world.

In this context, Eurobot is a major actor of robotics events since 1998. This is an
international amateur competition which occurs every year around mid-May. This report
states a part of the accomplished work regarding the development of a robot for this
competition. It's indeed a shared project where tasks have been explicitly divided
between involved students.

The detailed work concerns mainly the robot's motion (the “legs”). This involves an
accurate measure of moves and the ability to locate the robot at any time. Moreover,
given this feedback, the robot must be able to go from a point to another. From the
hardware to the software, the different parts have to be designed, tested and
validated.

The results of this project are likely to be linked with the robot's performance during
the contest. However, there are other parameters to take into account and a good
way to evaluate the robot is still to run unitary tests on different sub-systems.

Finally, the entire work of this project can leads to further development (students
project, research). One of the aim is also to enable different works on the same basis,
that's why modularity has also be kept in mind during the development.

Acknowledgements

First of all, I would like to thank Dr. David Harle for his advice and important
support throughout this year. It's also important for me to thank the university of
Strathclyde for its financial support.

I also would like to thank the entire workshop staff for the numerous parts
manufacturing and the great job accomplished.

I would also like to thank Schwarzer and ACP System for their sponsorship.

Table of Contents

 1 Introduction...5
 1.1 Report outline...5

 1.2 Eurobot overview..5

 1.3 Project objectives...7

 1.4 Project scheduling..8

 2 System design...10
 2.1 Tools and means used..10

 2.1.1 Linux operating system...10
 2.1.2 Cadence Orcad and Cadsoft Eagle...10
 2.1.3 gHDL and Xilinx ISE...10
 2.1.4 Code::Blocks IDE...11
 2.1.5 SVN repository...11
 2.1.6 Website (wiki)..11
 2.1.7 Lab facilities...12
 2.1.8 Workshop facilities...12

 2.2 Armadeus board...12
 2.2.1 APF27...13
 2.2.2 APF27Dev..14

 2.3 Motion control...15
 2.3.1 Motion control theory...15
 2.3.2 Hardware..21
 2.3.3 VHDL design..26
 2.3.4 Low-level software (C code)...32

 2.4 Beacon positioning system..35
 2.4.1 System overview..35
 2.4.2 Beacons theory..36
 2.4.3 Hardware design..38
 2.4.4 Software design...42

- 1 -

 2.5 High-level software...44
 2.5.1 Overview of main software...44
 2.5.2 Strategy manager..45
 2.5.3 CAN manager..45
 2.5.4 Log manager..45

 3 Testing and validation...47
 3.1 PCB debugging..47

 3.1.1 Test the tracks..47
 3.1.2 Solder the vias..47
 3.1.3 Solder the power supply components..48
 3.1.4 Solder the rest bloc by bloc..48

 3.2 VHDL simulation...48

 3.3 Software debug and test...49

 4 Conclusion and future work..50
 4.1 General conclusion...50

 4.2 Project planning..51

 4.3 Eurobot event...51

 4.4 Further work...51

 5 Appendices...52
 5.1 Initial Gantt Chart...52

 5.2 Software makefile...53

 5.3 Motors board schematic...56

 5.4 Motors board masks..57

 5.5 Motors board implementation layout...58

 5.6 VHDL code of AD_to_XYT converter...59

 5.7 TX Beacon schematic..66

 5.8 TX Beacon masks..67

- 2 -

 5.9 TX Beacon implementations..68

 5.10 RX Beacon schematic..69

 5.11 RX Beacon masks...70

 5.12 RX Beacon implementations..71

 5.13 Gtkviewer sample output..72

 5.14 Gnuplot sample output...73

- 3 -

Illustration Index
Illustration 1.2.1: 3D View of the playground...6
Illustration 1.3.1: Projects objectives..7
Illustration 2.2.1: Armadeus connections..13
Illustration 2.2.2: APF27 board...14
Illustration 2.2.3: APF27Dev board..15
Illustration 2.3.1: Motion control localization principle...16
Illustration 2.3.2: DC-motor Laplace model...18
Illustration 2.3.3: PID Laplace model...19
Illustration 2.3.4: Position control loop...20
Illustration 2.3.5: Position and speed orders...21
Illustration 2.3.6: Motors board inputs/outputs...22
Illustration 2.3.7: Optocouplers polarization...23
Illustration 2.3.8: LMD18200 connection..24
Illustration 2.3.9: Incremental encoders signals..25
Illustration 2.3.10: AM26LV32 connection..25
Illustration 2.3.11: VHDL Architecture..26
Illustration 2.3.12: Encoder state machine diagram..28
Illustration 2.3.13: Round corners trajectory generation...34
Illustration 2.4.1: Beacons principle...36
Illustration 2.4.2: Beacon mathematical purpose...37
Illustration 2.4.3: Beacon IR Modulation..38
Illustration 2.4.4: TX Beacon emission stage..39
Illustration 2.4.5: TSOP connection..41
Illustration 2.4.6: RX Beacon receivers multiplexing...42
Illustration 2.5.1: Software diagram..44

- 4 -

 1 Introduction

 1.1 Report outline
This report is divided in different parts. This first one aims to describe the project's

background and all the necessary knowledge. It is important to describe this
environment in order to state clearly the objectives and what actually need to be done.
With these objectives in mind, the different tasks have been identified and eventually
split again in smaller issues. All this enables a priori scheduling, which has actually
been revised a couple of times during the project.

The second part states a detailed account of the accomplished work. First,
explanations about tools and their role in the project are given. The next section
describes how the different tasks have been thought and designed. The report goes
on to examine the features of the robot's motion control system, the beacon
positioning system and the main software development.

The next part is a logical following regarding the designed systems. It explains the
methodology to test and validate the different parts. Results are also shown.

Finally the latest sections summarize the project and emphasize the future work that
could follow.

 1.2 Eurobot overview
Eurobot is an amateur robotics contest. Started in 1998 by the association “Planete

Sciences” (from France), the main objective over the years remains the cultural and
technical promotion of science (especially robotics in this case). Last year, more than
200 teams participated to this contest which last 5 days during May. Teams are either
students or independent clubs.

- 5 -

Being a team of Eurobot not only implies some technical knowledge. In fact, it's
often that students/members have to find sponsorship and thus produce communication
booklets. This is also about sharing knowledge and friendship between teams. It has
been clearly seen that the robots are more and more sophisticated, this exchange and
open-source mind contribute to a better global result and after all, to a better show.

Every year the contest's theme is different. However some common specifications
remain, like dimensions which are roughly the same, the fact that matches last 90
seconds and two robots play at the same time.

This year, robots have to gather three different kind of fruits: tomatoes, ear of corn
and oranges. Each one worth a different value (150, 250 and 300 points respectively).
The robot that score the most win the match and get some additional points. As
shown on the Illustration 1.2.1, each team owes a specific colour and has to put items
in their dedicated basket. Another point concern the corns: some of them are actually
fake (the ones in black) and screwed in the table.

The contest is organized in three specific phases:
• During the first stage, the robot has to pass an approval test. It consists of a

physical examination of the robot and a practical trial whereby at least one
point must be scored.

- 6 -

Illustration 1.2.1: 3D View of the playground

• The qualification rounds: 5 matches, where each team try to score as much
as possible.

• The final round, where the 16 best teams from the previous round compete in
a classical knock-out basis. Exception is done for the final where it's played in
two winning sets.

As a team of two students, we will represent the Strathclyde university. S bastiené
Brulais and I have worked all this year on the robot.

 1.3 Project objectives
Regarding to the contest rules and specifications, the different tasks can be chosen

with a certain degree of freedom. However, my involvement in this project implies to
work only on specific tasks (the ones highlighted). The Illustration 1.3.1 shown below
is an overall view of the different project's tasks. Mainly, the work concerns the robot's
motion and positioning.

- 7 -

Illustration 1.3.1: Projects objectives

• The first stage in the conception of the robot concerns the mechanical parts. The
robot uses two DC motors for its propulsion and two incremental encoders which
are rotation sensors. These two components are mounted on 4 wheels: two for
the propulsion (large width and strong grip) and the last two for the positioning
(thin wheel to improve accuracy).

• The motors board allows any logical driver (microcontroller, processor, fpga...) to
drive safely the motors independently.

• The motion control is insured by the Armadeus board (the main board, details
given chapter 2.3). There are two main devices which work together, critical tasks
are done in hardware in an FPGA while the high level operations are executed
on an embedded linux OS.

• It's also very useful to know roughly the opponent's position. The beacon
positioning system provide this capability and can also be used to have an
absolute positioning system.

 1.4 Project scheduling
When working on a long project it's often useful to plan the different objectives and

milestones. Tasks length estimation is important and if this is correctly done, it allows
to know at a specific moment if the project or a task is delayed, according to the
Gantt chart.

The project's work has been originally split in three global tasks:
• The base design, were the most important objectives of the project belong to,

it includes:
◦ The motors board design
◦ Hardware and low-level software of motion control

• Then, an “advanced” design section comes with either mandatory and optional
tasks as:
◦ High level software
◦ Beacon positioning system (optional)
◦ Robot's arm and actuator design (optional)

- 8 -

• The last section is called tests and simply indicates that unitary tests need to
be run during the entire project's length. At the end, when all the robot should
work, some test matches can be played.

The initial Gantt chart can be found in Appendix 5.1.

- 9 -

 2 System design

 2.1 Tools and means used

 2.1.1 Linux operating system

Linux is a powerful operating system for any developer who wishes to use open
source libraries, tools and other software. The cross-compilation tool (using arm-gcc)
needed to compile the motherboard's kernel is not available for windows anyway.

 2.1.2 Cadence Orcad and Cadsoft Eagle

When designing a board, there are basic steps to respect in order to obtain a PCB
mask at the end. Orcad and Eagle are layout and schematics editors. Both of them
can be used to:

• Draw the schematics
• Define components footprints and dimensions
• Place and route
• Produce Gerber files (optional but required for professional board

manufacturing)

 2.1.3 gHDL and Xilinx ISE

Designing a VHDL system often requires multiple steps. The first one consists to
“compile” the code in order to achieve what is called the behavioural simulation. This
doesn't take into account physical constraints, delays etc. but allows the designer to
validate the functions. This can be done with gHDL, a free tool based on gcc.
GtkViewer can then be used to navigate into timegraphs.

The second step requires to synthesize the design, given physical parameters
(target, time constraints, pinout placements...). This is done by ISE, the IDE provided
by Xilinx.

- 10 -

 2.1.4 Code::Blocks IDE

Code::Blocks is a free and light IDE that can be used for different kind of projects.
Here it's mainly used for C development, associated with makefiles. Different targets
are defined:

• x86: Compilation for x86 platform (laptop), useful to test and debug some
code without having the board

• arm: Cross-compilation for the arm processor, it calls another compiler and
linker with different libraries

• install: Calls the arm rule and then upload the produced binary to the board
(using ethernet link and scp).

• update_fw: Uploads the firmware binary (for the FPGA) to the board.

The Appendix 5.2 contains the main makefile, used to set up the different rules.

 2.1.5 SVN repository

SVN is a revision control system that enables development from different computers
while keep data synchronized. It is actually an invaluable tool which also allows
backups and restoration from previous versions easily.

In order to use this revision tool, the users can either do it in command line (can
become irksome for big projects) or graphical tools like Tortoise (for windows) or
RabbitCVS for linux.

 2.1.6 Website (wiki)

Because this project is also open-source, it's often appreciated to have a website to
explain system designs, tests and other details. A wiki is useful and helps to promote
the work done over the Internet. There is also an SVN plugin which allows to browse
the latest version and see associated comments from commits.

- 11 -

 2.1.7 Lab facilities

The University of Strathclyde provides a lab with equipments for the project:
• A playground to run different test with the robot
• A computer connected to the network
• A power supply and an oscilloscope
• A soldering station

The lab is located in R3.53 (Cidcom lab) and is shared with other researchers and
students.

 2.1.8 Workshop facilities

The Electronic and Electrical Engineering department has two dedicated workshops:
the mechanical workshop where different parts have been manufactured and the
electronic workshop where PCB can be made. This is a great service and helps a lot
regarding to the very practical aim of the project.

 2.2 Armadeus board
One of the main interest of this project concerns the main board. Armadeus

systems is a company that promote open source electronic designs and software.
Their main product at the moment is the APF27 and can be either used in a
standalone version (it's then up to the designer to build a board to plug it in) or with
its dedicated development board: the APF27Dev.

The combination of these two boards is the motherboard of the robot. In order to
interconnect dedicated components (sensors, actuators etc.), the APF27Dev is
connected to an interface board (called daughter board). This board has the same size
and is stacked on the APF27Dev. The general overview diagram is given by the
Illustration 2.2.1 (the power board does not appear on the diagram).

- 12 -

More informations and details can be found on the Armadeus systems website:
http://www.armadeus.com

The company is also an association, and a well documented wiki is available at
http://www.armadeus.com/wiki/

 2.2.1 APF27

For the project's purpose, an APF27 and the development board (in full version) are
used. Bellow are the APF27 specifications and the Illustration 2.2.2 is a picture of the
board.

• Processor: Freescale 400MHz i.MX27 (ARM929)
• RAM: 128MB of 32bits Mobile DDR
• Flash: 256MB of 32bits Mobile NAND
• FPGA coprocessor: Xilinx Spartan3A, 200k gates and up to 62 GPIOs
• Operating system: Linux 2.6.27

- 13 -

Illustration 2.2.1: Armadeus connections

http://www.armadeus.com/
http://www.armadeus.com/wiki/

 2.2.2 APF27Dev

The development board is bigger (160x100mm) and embedded a lot of
interfaces/features such as:

• On-board power supply, input from 5 to 16V
• RS232 port (serial console)
• Ethernet port
• USB 2.0 controller, two ports
• CAN interface controller
• ADC (7 channels, 10 bits)
• DAC (2 channels, 10 bits)
• MicroSD card slot
• RTC with backup battery
• Stereo audio controller
• Video output (HDMI port, embedded LCD connector)

A picture of the APF27Dev is shown on Illustration 2.2.3.

- 14 -

Illustration 2.2.2: APF27 board

 2.3 Motion control
The motion control design is the major development of the entire project. It has

multiple aspects and requires both hardware and software engineering. There are two
main functions achieved by the motion controller:

• The localization, which means given the incremental encoders signals, be able
to compute the position, speeds and acceleration of the robot.

• The control itself, which drive the motors in a smooth and accurate way.

 2.3.1 Motion control theory

The first thing to know in order to design the main functions is the robot's structure
and mechanics. As stated previously there are two motors and two encoders with their
associated wheels. They are all in the same axis but completely independent. The
robot is symmetric (left/right axis).

- 15 -

Illustration 2.2.3: APF27Dev board

 2.3.1.1 Localization

The incremental encoders give a position value. The idea of the localization is to
compute it (i.e., calculate the position and other motion parameters) at a specific rate
(not too slow but not too fast, for example, 100Hz). Thus the position will be sampled
and it'll correspond to a small move from each wheel, as shown on Illustration 2.3.1.
In fact it also corresponds to a slight motion in the X/Y plane, called dX and dY.

Computing these variations can be done with the dL and dR values, which are
respectively the small variations from the left and right wheels. The linear motion is
called dd and the angle formed by the robot is Ɵn (given previous angle Ɵ0).

The formulas are then as follow:

dd=
dRdL
2

n=0dR−dL

The trajectory between two consecutive points is approximated by a straight line.
This is not enough to know the X and Y motion. The linear position Ln = dd can

be derived, so that it gives the speed of the robot:

- 16 -

Illustration 2.3.1: Motion control localization principle

V n=Ln−L n−1

then,
dX=V n .cosn

dY=−V n . sinn

If now X and Y are integrated, we get back to a position:

Xn=X n−1dX
Yn=Y n−1dY

This is basically the function insured by the localizer. However, computing a sine
and a cosine at a high rate in an embedded system can lead to CPU load issue.

 2.3.1.2 Control

The final aim is to make the robot move according to a specific order. This function
is insured by the controller, given the localization feedback. There are two ways of
doing that:

• Controlling each wheel (left or right) independently. So for example, to go
straight the order should be the same on each controller.

• Using a polar controller: there is still two controllers but one represent the
translation and the other one the orientation.

The first thing to do is considering the DC-motor model. Physics law give the
bellow equations:

u t =et R.i t L
di t
dt

e t =Ke.t

Tm t =Kt.i t = Jt.
dt
dt

Tr t

where:
• t is the time variable
• u is the applied voltage
• e is the electromotive force

- 17 -

• i is the intensity through the motor
• is the rotation speed
• Tm is the motor's generated torque
• Tr is the resistive torque
• Ke is the speed constant
• Kt is the torque constant

The Laplace model is then given by the Illustration 2.3.2:

note: the resistive Torque doesn't appear here, but it acts on Tm(s) (simple subtraction).

The output Ω(s) is the speed of the motor.

The overall equation is then:

 s =
Kt.U s −RL.s .Tr s

Ke.KtR.Jt.sL.Jt.s2

If L<<R, this can be simplified to a 1st order equation (its actually the case, normal
values for a DC-motor are R = 2Ω and L = 0.0002H).

Now this system can be inserted in a control loop. As explained before, there are
conversions between Left and Right to Delta and Alpha domains. The corrector is a
parallel PID, which stands for Proportional Integral Derivative. The filter itself contains
three multiplications (P, I and D coefficients) and a sum. The Illustration 2.3.3 shows
the Laplace model of this filter.

- 18 -

Illustration 2.3.2: DC-motor Laplace model

Finally, these correctors are inserted in the global loop (Illustration 2.3.4)

- 19 -

Illustration 2.3.3: PID Laplace model

- 20 -

Illustration 2.3.4: Position control loop

The last stage consists to give a proper input to the controller. For instance, the
robot cannot physically move between two points in a null time. It means steps as
position orders aren't good. If ramps are used it's better, but it means the robot has
to change it's speed in a null time... which is equivalent to an infinite acceleration.

This finally leads to a well know velocity profile:
• Constant acceleration phase
• Maximum speed is reached, move at a constant speed
• Constant deceleration

The resulting position order is then the integration of this trapezoid, i.e. a square
polynomial function. This is shown in Illustration 2.3.5 (speed order in purple, position
order in orange)

This could also be directly implemented by using two consecutive PID: one for the
position which give orders to the speed PID. Maximum accelerations and velocities are
implemented by using saturation blocs between these two PIDs.

 2.3.2 Hardware

After designing and simulating the control process, a real robot needs a practical
implementation. This part describes the hardware used for it. The table shown bellow
gives details about the motors and the incremental encoders used:

- 21 -

Illustration 2.3.5: Position and speed orders

Motors: MFA970D161 • Nominal voltage: 12V
• No load speed: 15800 rpm
• No load current: 0.52A
• Maximum torque: 154.4 g.cm
• Output power: 21.2W
• Efficiency: 62%
• Reduction ratio: 1:16

Incremental encoders: K bler type 2400ü • Power supply: 5-24V
• Maximum speed: 12000 rpm
• #Pulse per revolution: 1024
• Current consumption: 50mA

The motors are connected to the motor board and the incremental encoders to the
daughter board.

 2.3.2.1 Motors board

The role of this board is to provide a safe and reliable interface between driving
logic device and motors. It has to meet the motors requirement (see above). The
Illustration 2.3.6 shows motors board inputs/outputs.

- 22 -

Illustration 2.3.6: Motors board inputs/outputs

The protection and voltage translation stage is done by using optocouplers. There
are small devices that contain a diode and a photo-transistor. When the diode emits
light, the photo-transistor becomes saturated and the logic level at its output is pulled
high. Otherwise, the transistor is blocked and the logic level is low. The main
advantage is to not have any electrical link between the input and the output. So if a
short-circuit happens, the optocouplers might be destroyed but not the logic behind it.

The Illustration 2.3.7 presents how optocouplers are polarized on the motor board.
The reference used is FOD617 from Fairchild semiconductor.

The main devices that drive the motors are two full H-bridge drivers. This devices
allow the motor to turn backward or forward at different speeds (controlled by using a
Pulse Width Modulation – PWM). The chosen devices are the LMD18200 from
National Semiconductor. They can drive 3A and have a current sensing output. Two
capacitors are simply connected between outputs and boostraps pins, as shown on the
Illustration 2.3.8.

- 23 -

Illustration 2.3.7: Optocouplers polarization

The entire schematic is available in Appendix 5.3. The PCB masks in Appendix 5.4
and the implementation layout in Appendix 5.5.

 2.3.2.2 Incremental encoder interface

The incremental encoders sensors provide three main signals:
• A line
• B line
• 0 line

The A and B lines are the main signals. Their phases are different of +/- 90
degrees. Depending on which signal raise the first, it indicates whether the encoder
turns clockwise or counter-clockwise. The rate at which each signal trigger depends on
the rotation speed, each raise of a line corresponds to 1 tick. The robot's encoders
have 1024 ticks per rotation. The line 0 triggers on each full rotation. This can be
useful to correct a drift or simply have a rough idea of the rotation speed.

The Illustration 2.3.9 shows the principle of the A and B lines:

- 24 -

Illustration 2.3.8: LMD18200 connection

In order to remove potential jitter, each line (A, B and 0) is a differential pairs. This
means there are 6 logic signals per encoder. The encoders also work with 5V levels,
so there is a need to translate this voltage. The line-receiving decoding and voltage
translation can be done with the same component from Texas Instrument: the
AM26LV32. The 0 line is not used. This device is used in the daughter board, the
pinout is shown in Illustration 2.3.10.

- 25 -

Illustration 2.3.9: Incremental encoders signals

Illustration 2.3.10: AM26LV32 connection

 2.3.3 VHDL design

The very first stage of the motion control is to decode the signals provided by the
incremental encoders and output Pulse Width Modulated signals to control the motors
speeds. This is done in VHDL and implemented in the APF27 FPGA (programmable
logic device). Further features are then build upon this like speed computation, X/Y
localizer, PID controllers etc.

In order to communicate properly with the CPU, the I.MX bus has to be used.
Signals are first of all wrapped into wishbone signals. The hierarchical structure
contains components who owe a specific address range. As the address bus is 10bits
wide, it has been chosen to use a maximum of 8 components with 128 registers
each. The motion controller is a component (certainly the biggest!) but other
components can be added (mezzanine control for instance). This principle of “virtual
components” is fully detailed with a led and button example at

http://www.armadeus.com/wiki/index.php?title=A_simple_design_with_Wishbone_bus

The Illustration 2.3.11 is a hierarchical view of FPGA entities. The motion controller
component is detailed in the next section.

- 26 -

Illustration 2.3.11: VHDL Architecture

http://www.armadeus.com/wiki/index.php?title=A_simple_design_with_Wishbone_bus

 2.3.3.1 Encoder subsystem

The aim of this subsystem is to give the encoder speed (a signed value on 16
bits), given the A and B signals. The system again, can be split into different
functions.

 a Digital filter

The first stage consists to filter the incoming signals. The filter should be able to
remove noise peaks. Due to the physical aspects of the robot, the A and B signals
cannot trigger faster than a specific rate. For instance, if the encoder wheel's size is d
= 60mm, the maximum speed is V = 2m/s and the number of pulse per revolution is
R = 1024, 1 revolution of the wheel corresponds to :

 . d <=> R ticks

So there are

=
R

 . d
~ 5433 ticks/meter

Now the robot moves at V m/s, there are Vt ticks per seconds:

Vt=V. ~ 10865 ticks/sec

Finally, it corresponds to a minimum width of 46µs. The filter has to remove any
spike smaller than that.

The method used remains quite simple to implement and requires few logic
elements. The filter uses a shift register, its input is fed by the actual signals (A, B).
The filtered output is stable (high or low) if all the register values are the same.
Otherwise, the values remain unchanged. The sampling rate determines the filter
latency and its capability to reject noise. For instance, in order to filter less than 46µs
(approximated to 40µs) wide peaks, the sampling rate can be 250kHz (period = 5µs)
and the filter 4bits wide.

- 27 -

 b Quadrature decoder

The second stage uses both input signals (A and B) to produce two outputs:
COUNT and UP. COUNT is a counter output which triggers at each change (whether
it is forward or backward). UP simply indicates if the rotation is clockwise or counter
clockwise.

This stage is achieved with a 4 states machine describe in Illustration 2.3.12 .

The combinatorial stage of outputs is given by the following truth table:

- 28 -

Illustration 2.3.12: Encoder state machine diagram

A B State COUNT UP
1 X S0 1 1

X 1 S0 1 0

X 1 S1 1 1

0 X S1 1 0

0 X S2 1 1

X 0 S2 1 0

X 0 S3 1 1

1 X S3 1 0

X X X 0 X

 c Counter

The output provided by the quadrature decoder can be directly connected to a
counter. The increment/decrement input is UP and the clock rate is COUNT. In order
to compute the speed, this counter is reset at a specific period. Thus, the value
contained by the counter is directly the number of ticks between two resets, it
corresponds to a basic digital derivation.

However, this rate cannot be chosen randomly, it has to be in a certain range.
• If it's too slow, the speed value will be fed to the controller slowly and the

physical motion between two computation might be important.
• If it's too quick, small variations may not be detected.

A common value of reset rate is around 100Hz. Thus, at the maximum speed, the
speed counter contains around 109 ticks (maximum speed is around 10,865 ticks).

- 29 -

 2.3.3.2 Left/Right to Alpha/Delta converter

The next stage is to convert these speeds into delta (linear translation) and alpha
(orientation) values. The logical bloc uses signed values and compute the following
formula:

D =
LR
2

A = R−L

 2.3.3.3 Alpha/Delta to X/Y/T and Cordic core

The last stage of the localizer is the bloc that compute actual positions in X/Y
domain. In order to do that, it's needed to compute trigonometric operations, this is
enabled with the Cordic core (which is provided by Xilinx as a free IP).

However there are few things to compute before, it's mainly about unit conversions.
The Cordic core needs radian value but the Left/Right to Alpha/Delta converter gives
only a relative angle without any units.

The first thing to do is to compute the angle in radian, according to the following
formula:

A[rad]=
A
I

Where A is the angle and I is the interaxial value (distance between the two
wheels). A and I have to be in the same unit (ticks), so that the result is in radian.
This division is done by an hardware divider and the result is fed to the cordic core.

The Cordic core gives the values of cos(A[rad]) and sin(A[rad]), the last stage is to
multiply it by the linear speed Vn which is done by embedded multipliers.

The entity also has to manage the different latency and insure signals integrity. A
specific process fetches dX and dY only when the outputs are valid. The last thing to
do is insure that angle values are bounded between -Pi and +Pi (chosen
representation). This is basically done by an hardware modulo.

- 30 -

The whole VHDL code of this entity is given in Appendix 5.6.

 2.3.3.4 PWM generator

This entity is used to produce a Pulse Width Modulation signal which control the
motors speeds. This is simply done by a counter which compares the its value to the
desired speed and set the output to 0/1, whether the counter's value is above or
below the threshold.

Some specific features have also been added, the PWM is actually signed and also
delivers a direction output depending on the speed's sign. This output can be inverted
(using a XOR gate) with the inverted input. This input is useful because the motors
are mounted “head to head” and opposite voltage need to be applied to make the
robot goes straight.

 2.3.3.5 Alpha/Delta to Left/Right converter

This entity is basically the opposite of the Left/Right to Alpha/Delta entity. It
computes the following formula:

R = D−A
L = DA

The outputs are fed to the PWM blocs.

 2.3.3.6 Error feeder

The error feeder is the link between the localization manager and the control
manager. It uses orders (from the CPU) as reference, and computes the errors
between those and the feedbacks. Outputs are positions and speeds in alpha/delta
domain. These outputs are then used by the PID controllers.

- 31 -

 2.3.3.7 PID Controllers

This is the heart of the controllers. As explained in the theory section, a PID bloc
is basically:

• 3 multipliers, between the error and associated gains (Kp, Ki, Kd)
• An accumulator (integral effect)
• A unitary delay with a subtracter (derivative effect)
• A three inputs adder

The resources needed can start to be heavy depending on the resolution. Internally,
registers are 24 bits wide but only the 16 MSB can be retrieved by the CPU.

 2.3.4 Low-level software (C code)

The low-level software of the motion controller provides the link between higher
software (A.I., obstacle avoidance etc.) and the FPGA registers themselves. The
motion control is composed of 3 modules:

• FPGA module which is the proper driver to read/write values
• Motion Control driver, which computes the values that need to be written in

the registers
• Trajectory Manager module, used to build paths that are then given to the

motion control module. These paths need waypoints points (logical point where
the robot has to go) which are fed by the higher levels (obstacle avoidance
and pathfinder).

 2.3.4.1 FPGA module

The FPGA is mapped at a specific address and can be acceded like a memory. It's
achieved by using pointers and the C code is relatively compact. Here is an extract
from the fpga.c module:

FILE* ffpga = NULL;

int* ptr_fpga;

int openFpga(void)

- 32 -

{

if((ffpga = (FILE*) open(FPGA_DEVICE, O_RDWR|O_SYNC)) == NULL)

{

printf("[INT] Error: Couldn't open FPGA device\n");

return 0;

}

ptr_fpga = mmap (0, 8192, PROT_READ|PROT_WRITE, MAP_SHARED,

(int) ffpga, FPGA_BASE_ADDR);

return -1;

}

Function used to open the FPGA device

Write or read to a specific register is then straightforward and dedicated functions
(fpgaReadComponent() and fpgaWriteComponent()) have been written.

void fpgaWrite16(int address, short value)
(short)(ptr_fpga+(address)) = (short)value;

Write a 16 bits value
short fpgaRead16(int address)

return *(short*)(ptr_fpga+(address));

Read a 16 bits value

 2.3.4.2 Motion control module

This module is linked to the trajectory manager. The main function of the motion
control module is moveFollowPath, which takes a path in parameter. This function
write appropriate values in the FPGA registers in order to follow the computed path.
The written values take into account the possible drift of the robot and then correct it
accordingly.

 2.3.4.3 Trajectory manager module

This is certainly the heavier module in terms of computation. This module provide
different functions to compute a path, given a set of waypoints. The first and simpler
“path rule” consist of two basic steps:

- 33 -

• Turn on place to align the robot on the next waypoint
• Go straight until the waypoint is reached

When the last point is reached, the robot can turn on place a last time to be on a
specific direction. It's easy to see that if there are N waypoints, the total number of
points/moves will be 2N-1 (1 turn and 1 straight path per waypoint except for the 1st

point). The function is called pathStraight() and takes two parameters: the waypoints
array and its size. The returned path's points are allocated dynamically and then need
to be free once the path is used.

The second function is an enhancement of the previous one, instead of turning on
place at each waypoint the robot can make a complex move (rotation+translation) in
order to “round” the corners. The function pathStraightRoundCorners() takes the same
parameters as previously plus the corner size radius. The two points computed for the
same waypoints are now shifted from the corner size radius along the previous and
next direction respectively, as shown on Illustration 2.3.13.

- 34 -

Illustration 2.3.13: Round corners trajectory generation

 2.4 Beacon positioning system

 2.4.1 System overview

A beacon system is always a great help for the Artificial Intelligence in the Eurobot
contest. It enables two main features:

• Absolute positioning, which can be very useful when its accuracy starts to be
high. Unfortunately, only few kind of beacons are enough precise to help the
dead-reckoning system.

• Opponent's position detection; even if the value of the position is not very
accurate (like 5 or 10 cm), it is always better than nothing! Macro decision
can be taken to avoid the other robot efficiently.

There are different kind of beacons, each one of those have pros and cons. The
table above gives more details about technological issues.

Beacon type Pros Cons
Laser • Very good accuracy

• Robust to noise
• Expensive
• Can be dangerous
• Hard to find class I lasers
• Low flexibility

Infrared • Moderate accuracy
• Flexibility
• Inexpensive

• Can be subject to noise
easily

Ultrasonic • Moderate accuracy
• Moderate robustness to noise
• Flexibility

• Good sensors are expensive

In this project, infrared beacons have been chosen. They don't especially give a
very accurate position but it's enough regarding the objectives. The cost and the safety
issues are also important.

- 35 -

Three fixed beacons can be set up around the table at known positions. They act
like lighthouse and send periodically frames. These frames are decoded by the
receiver, placed on the top of the opponent. Knowing the three incoming angle allows
to compute the position. This position is then sent to the robot using an Xbee module.
It's also possible that the robot (not the opponent) compute the angle (the board is
exactly the same). The Illustration 2.4.1 shows the beacons principle.

 2.4.2 Beacons theory

In this section, it's assumed that the three incoming angle are known. The sine
theorem used in the three triangles enable the knowledge of x and y.

The Illustration 2.4.2 shows the different angles and names used.

The knowledge of i , j , k , p ,m , o is used to determine the distances a ,b , c . It
finally leads to x , y . Here are some formulas, there are different ways to obtain x
and y:

- 36 -

Illustration 2.4.1: Beacons principle

It is an heavy computation. However, a lot of terms (like r,q,t,s) are constant.

- 37 -

Illustration 2.4.2: Beacon mathematical purpose

 2.4.3 Hardware design

All the work can now be split in two distinct parts: transmitter and receiver beacon.
This section describes the hardware used and the physical phenomenon used by
these infrared beacons. The main idea is to send modulated UART frames with IR
diodes. This has to be in a specific frequency band in order to demodulate the
signals. The receivers are TSOP modules which provide directly the proper filter.

 2.4.3.1 TX Beacon

The schematic of the TX beacon can be found in Appendix 5.7 . The masks are in
Appendix 5.8 and the implementation layout in Appendix 5.9. Bellow are detailed
explanations about the different beacon parts.

 a Modulation

The three transmitters (shorten TX) beacons behave exactly the same way. A
microcontroller is responsible for sending periodically UART frames. The signal has to
be modulated at 36kHz (TSOP frequency). This is achieved by using an XOR gate as
shown on Illustration 2.4.3.

It's possible to find individual NOR gate (TSOP23 package). The MC74HC1G02 is
used for the project.

- 38 -

Illustration 2.4.3: Beacon IR Modulation

 b Current driving

Now that a correct logic signal is generated, the infrared LEDs need to be
powered. In order to have a smooth and constant field of emission, it's needed to use
at least 12 LEDs for 180° range. The TX beacons use 16 LEDs. Each one of those
(ref. TSUS540) can support a peak forward current of 300mA (150mA in continuous
state). The LEDs are associated 4 by 4, which means a potential current drive of
1200mA!

A bipolar power transistor TIP122 is used, it can drives 5A. The driven current on
its collector is set by the base current. It's possible to adjust it easily with a
potentiometer. There are some digital potentiometer, like the CAT5114. So it's also
possible to drive the emitted power, very useful for calibrations or even more complex
frames (same frame with different emission levels).

The overall stage modulation + current driving is shown on Illustration 2.4.4.

 c CAN synchronization

Because the same frequency is used for all the TX beacons, they have to send
their frames one after the other. It implies to set a synchronization protocol between
them. The rules said it's possible to link them with a wire. So it has been chosen to
use the CAN protocol which is fast enough and reliable to synchronize them.

- 39 -

Illustration 2.4.4: TX Beacon emission stage

The CAN transceiver used is a SN65HVD1050 from Texas instrument, it operates
under 5V power supply.

 d Microcontroller

The chosen microcontroller is a PIC18F2480. Some peripherals are compulsory so
the choice is quickly limited to few devices. Microchip has been chosen because there
is already a PicKit3 programmer available for the project. The mandatory features are:
• UART, to send data
• Timer, for PWM modulation
• CAN driver, for synchronization

The choice of using an external oscillator is due to the precision needed for the
UART. There are also two switches and three LEDs that can be used to indicate
beacon status or anything else.

 2.4.3.2 RX Beacon

The RX beacon board is both used for the opponent and project robots. It embeds:
• TSOP IR receivers
• Multiplexed UART (for multiple receivers)
• Xbee interfaced on a second UART
• CAN bus interface (not used on the opponent's board)

The full schematic is available in Appendix 5.10. As usual, masks and
implementation layout follow in Appendix 5.11 and 5.11. Details about specific
components are present bellow.

- 40 -

 a TSOP IR Receivers

A total of 16 receivers are available all around the board, which means each
sensor covers 22.5°. When something is detected, the TSOP output is directly the
UART frame sent. The receivers are connected as shown on Illustration 2.4.5.

The LED pulled high is here in order to have a visual feedback when the sensor is
actually receiving. RTS and CTS components are recommended by the manufacturer
(low-pass filter, cut-off frequency around 2kHz).

 b UART multiplexers

As a matter of fact, there is only one UART available for the 16 receivers. As it's
impossible to find a microcontroller with 16 UART, there are two main alternatives:

• Use time multiplexing
• Use a microcontroller with reconfigurable pins

It has been chosen to use multiplexers. There are 3 CD4051B (8 to 1) but only 4
bits are used to address the whole range of sensors. The connections are routing
dependent and are associated to the correct order in software. The shows the actual
multiplexing bloc.

- 41 -

Illustration 2.4.5: TSOP connection

 2.4.4 Software design

The beacons software is composed of two distinct parts, either for TX or RX
beacon:
• The physical interface and management (PWM setup, power emission setup,

initialisations etc.).
• The networking features (CAN or RF).

The first point is quite straightforward and is about correct initialisation of peripherals
(timers, CAN, …).

The CAN synchronization steps are explained bellow:
• On power on, initialise the beacon and don't emit anything
• Listen to the CAN, if there is nothing for 1 sec:

◦ Set the beacon as master (ID #1).
◦ Send periodically (for instance every 50ms) a “STATE” signal on CAN bus

- 42 -

Illustration 2.4.6: RX Beacon receivers multiplexing

◦ Send by IR a “STATE” frame with beacon ID 1.
◦ Read the CAN
◦ If there is nothing, go back do the 3 previous states again
◦ Else, register the new incoming beacon (“STATE” signal with ID 2 or 3)
◦ If there are less than 3 beacons, go back 5 steps behind

• else,
◦ Register the beacon ID
◦ Read the CAN again for 1sec
◦ If there isn't any other device, set the ID to #2

▪ Repeat the last two steps
◦ Otherwise, set ID to #3

• All beacons are ON, entering main synchronization process:
• If ID = 1,

◦ Send “SYNCHRO” signal with ID 1
◦ Send IR frame(s) with ID 1
◦ Read the CAN until receiving “SYNCHRO” signal with ID 3
◦ Wait for 100ms (IR frames sending time)
◦ Loop

• else,
◦ Read the CAN until receiving “SYNCHRO” signal with ID n-1
◦ Wait for 100ms (IR frames sending time)
◦ Send “SYNCHRO” signal with ID
◦ Send IR frames with ID
◦ Loop

This pseudo code doesn't take into account faults, other timeouts or shut down
procedures. For example it could be useful to send error frames to the receiver if a
TX beacon doesn't respond.

- 43 -

 2.5 High-level software

 2.5.1 Overview of main software

The main program is goal is to manage all the different and individual modules.
There are many ways to do that, but the program runs on an Operating System so
it's possible to use the POSIX multithreading features.

Each “manager” is considered as an independent thread and is launched by the
main process. This project intended to work on three threads (but they are more than
that):
• The strategy manager, which calls all the pathfinding and motion control

algorithms, manage to send message when it's needed etc.
• The CAN manager, which is responsible for messages reception and take proper

actions.
• The Log manager; a passive thread that simply store the robot's status in a

logfile.

The Illustration 2.5.1 shows the different interconnections between software entities.

- 44 -

Illustration 2.5.1: Software diagram

 2.5.2 Strategy manager

The strategy manager is the main thread of the program. It uses all the available
functions provided by the artificial intelligence, path finder, trajectory generator, motion
controller and can manager modules. It also uses the robot's status which is stored
and manipulated with the context module.

The artificial intelligence uses a set a rules, determined at the beginning. These
rules say, for instance, which action between two possibilities has the highest priority.
It provides primitives that actually call related function(s). For example “MOVE THE
ARM” corresponds to send a message on the CAN bus where “MOVE THE ROBOT”
corresponds to a complex cascading call of functions.

 2.5.3 CAN manager

The CAN manager module provides the high level interface with the other robot's
peripherals. The initialisation function open the device and create a socket, using the
socketCAN module for linux.

The main thread keeps waiting for incoming messages. When something arrives, it's
decoded and fetched. Then, the robot's status is updated if needed (for example, the
position of a servomotor has changed).

 2.5.4 Log manager

The log manager is surely the smallest thread but remains nonetheless important.
Its utility is explained further in the report.

The first thing done by the initialisation function is to create a new file with a
timestamp in its name. The format is “elder_yyyy_mm_dd-hh_mm.log”. So that files are
sorted by name from the oldest to the newest.

- 45 -

As long as the main program runs, the context is stored in this file periodically (the
rate can be adjusted, 50ms is used which corresponds to 20 samples per seconds).

When the program ends, the close function is called. The logfile is then closed and
copied with a different name: “last.log”. Then, in order to retrieve the log there is no
need to know the exact name (extremely useful for automated tasks that can be
scripted).

- 46 -

 3 Testing and validation
As a part of every development, it's as important to develop an run relevant test as

the design itself. This section presents different kind of tests used in this project.

 3.1 PCB debugging
After an hardware design, it's likely to manufacture the PCB. A lot of things can go

wrong if attention is not taken, components can be destroyed or even explode. This is
even worth when the design implies batteries, some of them (the Lion polymer type)
have to be treated carefully and a short circuit can leads to an important safety issue.

This part is written as a set of rules, that can be applied for any PCB.

 3.1.1 Test the tracks

First of all, it's important before soldering anything to test the continuity of the
different tracks. If a track is a broken, it can often be repaired by using some tin on
it. More important is the short circuits, when testing the tracks it's also mandatory to
insure that they aren't connected together if they shouldn't.

 3.1.2 Solder the vias

The second stage is to solder the different vias (if the boards is not from a
professional manufacturer!). They insure the link between top and bottom layer. After
that, the first operation needs to be run again. A last test and very important is to
verify the discontinuity between the Ground and different power supplies signals.

- 47 -

 3.1.3 Solder the power supply components

Some variations can occur depending on the type of board. However, it's important
to insure that there isn't any trouble with the supplies so that other blocs can be
solder safely. Of course, after soldering the power supply, test it!

 3.1.4 Solder the rest bloc by bloc

The other parts can be soldered. As previously, it's sometimes important for large
design to not solder everything in a row.

 3.2 VHDL simulation
In this chapter, tools and mean about VHDL simulation are introduced. Because the

chip is a programmable device, it's not easy to probe it directly when the system is
running. Some tools exists (provided by Xilinx) and need to be added during the
synthesize phase. Data will be gather and can be then watched in live using JTAG
probe.

However there isn't any available probe for the project, and actually this kind of test
can be avoid if a proper set of simulations has been run before. The tool used is
gHDL associated with gtkViewer to watch the time graphs.

The first step is to design a testbench file for the entity of interest. This file doesn't
have to follow the synthesis rules and has no inputs/outputs. It only instantiates one
or multiple components and provide stimuli for their inputs. The simulation process
then compute the output states of the components which can be seen in an
appropriate viewer.

As an example, the following code is given to show how a clock can be generated
without synthesis considerations:

- 48 -

-- Clock generation

clk_generator: process

begin

�

sig_clk <= '0';

wait for clk_Period/2;

sig_clk <= '1';

wait for clk_Period/2;

�

end process;

Where clk_period is a constant value directly given in seconds.

The Appendix 5.13 show an example of output test for the entity accel_limiter (limit
the incoming speed's change to an upper and lower bound of acceleration).

 3.3 Software debug and test
Debugging a program running on a remote machine with a different architecture is

more complicated than a “normal” (i.e., compiled for x86) program that runs on a
laptop. In this project, three different ways have been used to test the programs:
• Compile it for x86 architecture when it's possible. It's often the case with high

level modules (like pathplanning, trajectory generation etc.).
• Cross-compile it for the target and debug it using gdbdebugger. This software

uses the ethernet link to send different debugging command (run, halt, next etc.)
to the target and retrieving values.

• The last possibility is to use logfiles. These ones are not only present for
debugging when something goes wrong but also to store specific values that can
be used/post-processed later. The log_manager thread stores at a specific rate
informations about the robot. These ones are retrieved later using ssh. A gnuplot
script is then used to see the different values of position, speeds etc. as graphs.
This is then a powerful tool which helps for any control development. An example
of Gnuplot output is given in Appendix 5.14 .

- 49 -

 4 Conclusion and future work
This section presents the conclusion made at the end of the project. It also

summarizes achievements and remaining work. Due to its nature, there are always
possible improvements and this is shown every year at Eurobot, teams never stop to
work on better solutions. As a result, possible upgrades and further developments will
be presented.

 4.1 General conclusion
The aim of this project was to design, validate and build a motion control system

for a robot. This had to deal with a lot of different matters, most of them coming
directly from the competition's rules. The different designs are either hardware or
software. The general development for each of them follow roughly the same process:
specifications (identify the need), design and technological choices (thoughts about the
“how”), build the system or develop the code and finally, test it.

As a global result, the aim has been achieved: the robot is able to retrieve its
position according to the incremental encoders which was the first steps of the motion
control system. The different parameters are then used as a feedback to close the
control loop and the numerous tests ran prove that the controller works. The software
design that stands behind also works properly.

However, there is still some development to work on. It concerns mainly some
software parts as the Artificial Intelligence. Priority has been given to hardware
developments.

- 50 -

 4.2 Project planning
A conclusion also allows to state whether the planning has been respected or not.

In general terms, the work that was planned in October have been done but
considerably delayed for some developments. The fear was at the beginning, long
delays concerning workshop manufacture. It wasn't the case at all and the jobs
achieved by the staff were done quickly. The delays come from developments and
designs that took more time than expected.

 4.3 Eurobot event
The competition starts on the 13th of May. The end of the academic project doesn't

mean the end of the development of work because both students want to do the best
at Eurobot!

 4.4 Further work
As stated previously, there are still things to develop and improve. However, most

of the work has been done and further work involving projects or research topics for
the next year would probably have their own specifications.

Because the Armadeus board doesn't belong to the University, the daughter board
has been developed with the possibility of implementing the motion control on it. The
design, is then different because it involves only a microcontroller.

Further work around the beacon system can also be done, maybe improving the
communication protocol between fixed beacon is possible. Another thing could be to
add an Xbee module on these lighthouses and define an auto-calibration setup at the
beginning, involving the power emission modulation. Then the beacons are able to
work with different kind of surrounding lights and noise.

- 51 -

 5 Appendices

 5.1 Initial Gantt Chart

- 52 -

 5.2 Software makefile
______ _ _____ ______ _____

| ____| | | __ \| ____| __ \

| |__ | | | | | | |__ | |__) |

| __| | | | | | | __| | _ /

| |____| |____| |__| | |____| | \ \

|______|______|_____/|______|_| _\

2o1o

#

Global definitions

Projects constants

EXEC_NAME := elder_arm

OBJ_DIR := ./obj

BIN_DIR := ./bin

SRC_DIR := ./src

INC_DIR := ./inc

FW_PATH := /home/paul/Work/ise/elder_fw/elder_top.bit

Armadeus board

ARM_ADDR := 192.168.0.10

HOST_ADDR := 192.168.0.1

ARM_USER := root

GDB_PORT := 2345

INSTALL_DIR := /root/bin

FW_DIR := /root/fpga_fw

Host tftpboot directory

TFTPBOOT_DIR := /tftpboot

- 53 -

Target switch

arm

ifeq ($(TARGET),target)

Armadeus base directory

ARMADEUS_BASE_DIR = ~/Work/armadeus/git-armadeus

include $(ARMADEUS_BASE_DIR)/Makefile.in

ROOT_DIR := $(ARMADEUS_ROOTFS_DIR)

Compiler, flags and libs

CC := $(ARMADEUS_TOOLCHAIN_PATH)/arm-linux-gcc

STRIP := $(ARMADEUS_TOOLCHAIN_PATH)/arm-linux-strip

CFLAGS := $(shell STAGING_DIR=$(ARMADEUS_STAGING_DIR) sh $(ARMADEUS_SDL_DIR)/sdl-
config --cflags) -I $(INC_DIR) -g

LDFLAGS := -I $(INC_DIR)

LIBS := $(shell STAGING_DIR=$(ARMADEUS_STAGING_DIR) sh $(ARMADEUS_SDL_DIR)/sdl-config
--libs) -lpthread -lSDL_image -lSDL_ttf -lSDL_mixer -lSDL_net

Defines for preprocessor

DEFINES = -DTARGET

#x86

else ifeq ($(TARGET),host)

Host base directory

ROOT_DIR:="/"

Compiler, flags and libs

CC := gcc

STRIP := ""

CFLAGS := `/usr/bin/sdl-config --cflags` -I $(INC_DIR) -g

LDFLAGS := -I $(INC_DIR)

LIBS := `/usr/bin/sdl-config --libs` -lSDL -lSDL_ttf -lSDL_image -I $(INC_DIR)

Defines for preprocessor

DEFINES = -DHOST

endif

Source files

SRC := $(shell find . -name "*.c" -print)

Object files

OBJ := $(SRC:.c=.o)

Building rules

- 54 -

default: $(EXEC_NAME)

arm: $(EXEC_NAME)

x86: $(EXEC_NAME)_x86

$(EXEC_NAME): $(OBJ)

$(CC) $(DEFINES) $(LIBS) -lm -o $@ $^ $(LDFLAGS)

mv $(OBJ) $(OBJ_DIR)

mv $(EXEC_NAME) $(BIN_DIR)

$(EXEC_NAME)_x86: $(OBJ)

$(CC) $(DEFINES) $(LIBS) -lm -o $@ $^ $(LDFLAGS)

mv $(OBJ) $(OBJ_DIR)

mv $(EXEC_NAME)_x86 $(BIN_DIR)

%.o: %.c

$(CC) $(DEFINES) $(CFLAGS) -lm -c -o $@ $^

install: arm

cp $(BIN_DIR)/$(EXEC_NAME) $(TFTPBOOT_DIR)

scp $(BIN_DIR)/$(EXEC_NAME) $(ARM_USER)@$(ARM_ADDR):$(INSTALL_DIR)

cleanall: clean

update_fw:

scp $(FW_PATH) $(ARM_USER)@$(ARM_ADDR):$(FW_DIR)

clean:

rm -f $(OBJ)

rm -rf $(OBJ_DIR)/*.o

rm -f $(BIN_DIR)/$(EXEC_NAME)

- 55 -

 5.3 Motors board schematic

- 56 -

 5.4 Motors board masks

(note: this isn't scaled, the actual board is smaller).

Bottom

Top

- 57 -

 5.5 Motors board implementation layout

Bottom

Top

- 58 -

 5.6 VHDL code of AD_to_XYT converter
--
-- ELDER Project

-- 2009 / 2010

--

-- Motion Control

--

--

-- AD_to_XY.vhd

--

-- Description:

--

-- This is the main unit of the localization

-- manager. Given Angle and Advance, it computes

-- the new position every clkControl rising edge.

--

--

-- Libraries

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

--

entity AD_to_XYT is

--

port

(

-- Clock and reset

clk : in std_logic;

reset : in std_logic;

-- Control clock

clkControl : in std_logic;

-- Interaxial constant

interaxial : in std_logic_vector(15 downto 0);

-- Position in tick

posA : in std_logic_vector(15 downto 0);

-- Speed, in tick * fcontrol

- 59 -

speedD : in std_logic_vector(15 downto 0);

-- Initial positions, assuming speeds are equal to 0

posXi : in std_logic_vector(15 downto 0);

posYi : in std_logic_vector(15 downto 0);

posTi : in std_logic_vector(15 downto 0);

-- Output positions in tick

posX : out std_logic_vector(15 downto 0);

posY : out std_logic_vector(15 downto 0);

posT : out std_logic_vector(15 downto 0)

);

end AD_to_XYT;

--

architecture behav of AD_to_XYT is

--

-- Constants

-- Pi = 0011.0010010000111 in 3Q13

-- -Pi = 1100.1101101111001 in 3Q13

-- 2Pi = 0110.0100100001111 in 3Q13

constant PLUS_PI : signed(15 downto 0) := "0110010010000111";

constant MINUS_PI : signed(15 downto 0) := "1001101101111001";

constant TWO_PI : signed(15 downto 0) := "1100100100001111";

constant DIVIDER_LATENCY : natural := 300; -- "M+5"*8 = (32+5)*8 rounded to 300

-- Components

component cordic is

port (

phase_in : in std_logic_vector(15 downto 0);

nd : in std_logic;

x_out : out std_logic_vector(15 downto 0);

y_out : out std_logic_vector(15 downto 0);

rdy : out std_logic;

rfd : out std_logic;

clk : in std_logic;

ce : in std_logic;

aclr : in std_logic);

end component;

component divider is

- 60 -

 port (

sclr : in STD_LOGIC;

 rfd : out STD_LOGIC;

 clk : in STD_LOGIC := 'X';

 dividend : in STD_LOGIC_VECTOR (31 downto 0);

 quotient : out STD_LOGIC_VECTOR (31 downto 0);

 divisor : in STD_LOGIC_VECTOR (15 downto 0);

 fractional : out STD_LOGIC_VECTOR (15 downto 0)

);

end component;

component multiplier is

port

(

clk: in std_logic;

a: in std_logic_vector(15 downto 0);

b: in std_logic_vector(15 downto 0);

sclr: in std_logic;

p: out std_logic_vector(31 downto 0)

);

end component;

-- Signals

signal posArad : std_logic_vector(15 downto 0); -- 2Q13

-- Actual values of X, Y, T in tick

-- and the velocities in tick * fcontrol

-- Internal precision is 32 for better accuracy

-- (save the fractionnal parts of dX and dY)

-- 1mm ~ 4096/(Pi*45mm) ~ 29 tick,

-- so we need at least 17bits for 3000mm

-- 19 bits for integer part (signed) : 28 downto 13

-- 13 bits for the fractionnal part : 12 downto 0

signal X : signed(31 downto 0); -- 18Q13

signal Y : signed(31 downto 0); -- 18Q13

signal Trad : signed(15 downto 0); -- 2Q13

-- Delta X and Y values in tick

signal dX : signed(31 downto 0);

signal dY : signed(31 downto 0);

-- Divider control signals

- 61 -

signal div_rfd : std_logic;

signal div_ready : std_logic;

signal quotient : std_logic_vector(31 downto 0);

signal quotients : signed(31 downto 0);

signal dividend : signed(31 downto 0);

-- Cordic control signals

signal cor_ready : std_logic;

signal cor_rfd : std_logic;

signal cosPosT : std_logic_vector(15 downto 0);

signal sinPosT : std_logic_vector(15 downto 0);

signal cosPosTs : signed(15 downto 0);

signal sinPosTs : signed(15 downto 0);

--

begin

--

-- Type conversion

cosPosTs <= signed(cosPosT);

sinPosTs <= signed(sinPosT);

quotients <= signed(quotient);

-- Hardware Divider to convert the

-- angle in radian

radDivdier: divider

 port map(

 sclr => reset,

 rfd => div_rfd,

 clk => clk,

 dividend => std_logic_vector(dividend),

 quotient => quotient,

 divisor => std_logic_vector(interaxial),

 fractional => open

);

-- Sine & Cosine computing

sinCos: cordic

port map

(

phase_in => std_logic_vector(Trad),

nd => div_ready,

x_out => cosPosT,

y_out => sinPosT,

rdy => cor_ready,

rfd => cor_rfd,

- 62 -

clk => clk,

ce => '1',

aclr => reset

);

-- Signals

-- pre multiplication by 2^16

dividend <= signed(posA) & X"0000";

-- quotient(31) is the sign bit

-- quotient(30 downto 16) is the integer part

-- quotient(15 downto 0) is the fractionnal part

-- it's wrapped to a 2Q13 format, ie:

-- bit: 31 16 15 0

-- quotient: 0000 0000 0000 0000. 0000 0000 0000 0000

-- posTrad: 000. 0000 0000 0000 0

posArad(15) <= quotient(31); -- sign bit

posArad(14 downto 13) <= quotient(17 downto 16); -- i. part

posArad(12 downto 0) <= quotient(15 downto 3); -- f. part

posX <= std_logic_vector(X(30 downto 15)); -- i. part only (with factor 4)

posY <= std_logic_vector(Y(30 downto 15));

posT <= std_logic_vector(Trad);

-- Data validation process

process(clk, clkControl)

variable latency : natural;

begin

-- clkControl acts as a reset

-- put the divider in "not ready" state first

if clkControl = '1' then

latency := 0;

div_ready <= '0';

dX <= (others => '0');

dY <= (others => '0');

elsif rising_edge(clk) then

-- Count each clock when div_rfd is high

if div_rfd = '1' then

latency := latency + 1;

end if;

- 63 -

-- we have wait enough, the ouptut data from

-- the divider is ready and the cordic input

-- data is then ready for data

if latency = DIVIDER_LATENCY then

div_ready <= '1';

end if;

-- Cordic has just finished, output data is valid

-- we can compute the dX and dY multiplications

if cor_ready = '1' then

dX <= cosPosTs * signed(speedD);

dY <= sinPosTs * signed(speedD);

end if;

end if;

end process;

-- Update coords process

process(clkControl, reset)

variable newTrad : signed(15 downto 0);

begin

-- Reset to initial positions

-- Velocities are assumed to be null

if(reset = '1') then

X <= signed(posXi) & "0000000000000"; -- fractional part is null

Y <= signed(posYi) & "0000000000000";

Trad <= signed(posTi);

newTrad := (others => '0');

elsif rising_edge(clkControl) then

-- New X and Y values

X <= X + dX;

Y <= Y + dY;

-- New angle value, modulo 2Pi

-- -Pi <= T <= Pi

newTrad := Trad + signed(posArad);

-- Modulo

- 64 -

if newTrad > PLUS_PI then

Trad <= newTrad - TWO_PI;

elsif newTrad < MINUS_PI then

Trad <= newTrad + TWO_PI;

else

Trad <= newTrad;

end if;

end if;

end process;

end behav;

- 65 -

 5.7 TX Beacon schematic

- 66 -

 5.8 TX Beacon masks
Note: again, masks aren't scaled. The actual width is 80mm.

Bottom

Top

- 67 -

 5.9 TX Beacon implementations

Bottom

Top

- 68 -

 5.10 RX Beacon schematic

- 69 -

 5.11 RX Beacon masks
Actual size is 80x80mm.

Bottom

Top

- 70 -

 5.12 RX Beacon implementations

Bottom

Top

- 71 -

 5.13 Gtkviewer sample output

- 72 -

 5.14 Gnuplot sample output

- 73 -

	 1 Introduction
	 1.1 Report outline
	 1.2 Eurobot overview
	 1.3 Project objectives
	 1.4 Project scheduling

	 2 System design
	 2.1 Tools and means used
	 2.1.1 Linux operating system
	 2.1.2 Cadence Orcad and Cadsoft Eagle
	 2.1.3 gHDL and Xilinx ISE
	 2.1.4 Code::Blocks IDE
	 2.1.5 SVN repository
	 2.1.6 Website (wiki)
	 2.1.7 Lab facilities
	 2.1.8 Workshop facilities

	 2.2 Armadeus board
	 2.2.1 APF27
	 2.2.2 APF27Dev

	 2.3 Motion control
	 2.3.1 Motion control theory
	 2.3.1.1 Localization
	 2.3.1.2 Control

	 2.3.2 Hardware
	 2.3.2.1 Motors board
	 2.3.2.2 Incremental encoder interface

	 2.3.3 VHDL design
	 2.3.3.1 Encoder subsystem
	 a Digital filter
	 b Quadrature decoder
	 c Counter

	 2.3.3.2 Left/Right to Alpha/Delta converter
	 2.3.3.3 Alpha/Delta to X/Y/T and Cordic core
	 2.3.3.4 PWM generator
	 2.3.3.5 Alpha/Delta to Left/Right converter
	 2.3.3.6 Error feeder
	 2.3.3.7 PID Controllers

	 2.3.4 Low-level software (C code)
	 2.3.4.1 FPGA module
	 2.3.4.2 Motion control module
	 2.3.4.3 Trajectory manager module

	 2.4 Beacon positioning system
	 2.4.1 System overview
	 2.4.2 Beacons theory
	 2.4.3 Hardware design
	 2.4.3.1 TX Beacon
	 a Modulation
	 b Current driving
	 c CAN synchronization
	 d Microcontroller

	 2.4.3.2 RX Beacon
	 a TSOP IR Receivers
	 b UART multiplexers

	 2.4.4 Software design

	 2.5 High-level software
	 2.5.1 Overview of main software
	 2.5.2 Strategy manager
	 2.5.3 CAN manager
	 2.5.4 Log manager

	 3 Testing and validation
	 3.1 PCB debugging
	 3.1.1 Test the tracks
	 3.1.2 Solder the vias
	 3.1.3 Solder the power supply components
	 3.1.4 Solder the rest bloc by bloc

	 3.2 VHDL simulation
	 3.3 Software debug and test

	 4 Conclusion and future work
	 4.1 General conclusion
	 4.2 Project planning
	 4.3 Eurobot event
	 4.4 Further work

	 5 Appendices
	 5.1 Initial Gantt Chart
	 5.2 Software makefile
	 5.3 Motors board schematic
	 5.4 Motors board masks
	 5.5 Motors board implementation layout
	 5.6 VHDL code of AD_to_XYT converter
	 5.7 TX Beacon schematic
	 5.8 TX Beacon masks
	 5.9 TX Beacon implementations
	 5.10 RX Beacon schematic
	 5.11 RX Beacon masks
	 5.12 RX Beacon implementations
	 5.13 Gtkviewer sample output
	 5.14 Gnuplot sample output

